高开低走,仍有进步 —— 我的 2021
正如我在标题所总结的,2021 年对于我本人来说是高开低走的一年。高,在于 9 月之前状态很好,思维非常活跃;低,在于 9 月之后状态下滑,十月底开始几乎停止了跑步。尽管如此,总体上还是不断进步的。
正如我在标题所总结的,2021 年对于我本人来说是高开低走的一年。高,在于 9 月之前状态很好,思维非常活跃;低,在于 9 月之后状态下滑,十月底开始几乎停止了跑步。尽管如此,总体上还是不断进步的。
在 body 里面添加变量:
{
"name": "{{name}}",
"value": {{value}}
}
然后在脚本里设置变量的值:
pm.variables.set("name", "timestamp")
pm.variables.set("value", Math.round(new Date()/1000))
设置的值会被简单地填充到 Body 中,不会根据值的类型格式化。例如 name 的值为字符串,在添加变量的之后就需要在花括号外面加上双引号。
https://github.com/openhardwaremonitor/openhardwaremonitor
https://stackoverflow.com/questions/3262603/accessing-cpu-temperature-in-python
collector/coretemp.go
// https://github.com/prometheus-community/windows_exporter/pull/727
package collector
import (
"bytes"
"fmt"
"strings"
"syscall"
"unsafe"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/common/log"
"golang.org/x/sys/windows"
)
// technical documentation for the shared memory structure: https://www.alcpu.com/CoreTemp/developers.html
var (
kernel32 = syscall.NewLazyDLL("KERNEL32.dll")
msvcrt = syscall.NewLazyDLL("msvcrt.dll")
createMutexW = kernel32.NewProc("CreateMutexW")
releaseMutex = kernel32.NewProc("ReleaseMutex")
openFileMappingW = kernel32.NewProc("OpenFileMappingW")
closeHandle = kernel32.NewProc("CloseHandle")
mapViewOfFile = kernel32.NewProc("MapViewOfFile")
unmapViewOfFile = kernel32.NewProc("UnmapViewOfFile")
memcpy_s = msvcrt.NewProc("memcpy_s")
)
func init() {
registerCollector("coretemp", NewCoreTempCollector)
}
// A coreTempCollector is a Prometheus collector for CoreTemp shared data metrics
type coreTempCollector struct {
Temperature *prometheus.Desc
Load *prometheus.Desc
}
// NewCoreTempCollector ...
func NewCoreTempCollector() (Collector, error) {
const subsystem = "coretemp"
return &coreTempCollector{
Temperature: prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "temperature_celsius"),
"(Temperature)",
[]string{"name", "core"},
nil,
),
Load: prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "load"),
"(Load)",
[]string{"name", "core"},
nil,
),
}, nil
}
// Collect sends the metric values for each metric
// to the provided prometheus Metric channel.
func (c *coreTempCollector) Collect(ctx *ScrapeContext, ch chan<- prometheus.Metric) error {
if desc, err := c.collect(ch); err != nil {
log.Error("failed collecting coretemp metrics:", desc, err)
return err
}
return nil
}
func (c *coreTempCollector) collect(ch chan<- prometheus.Metric) (*prometheus.Desc, error) {
s, err := readCoreTempSharedData()
if err != nil {
return nil, err
}
cpuName := s.GetCPUName()
for i := uint32(0); i < s.CoreCount; i++ {
// convert to celsius if internal unit is fahrenheit
temp := float64(s.Temp[i])
if s.IsFahrenheit {
temp = (temp - 32) * 5 / 9
}
ch <- prometheus.MustNewConstMetric(
c.Temperature,
prometheus.GaugeValue,
temp,
cpuName,
fmt.Sprintf("%d", i),
)
ch <- prometheus.MustNewConstMetric(
c.Load,
prometheus.GaugeValue,
float64(s.Load[i]),
cpuName,
fmt.Sprintf("%d", i),
)
}
return nil, nil
}
// read memory from CoreTemp to fetch cpu data
func readCoreTempSharedData() (*coreTempSharedData, error) {
mutexName, _ := windows.UTF16PtrFromString("CoreTempMutexObject")
mutexObject, _, err := createMutexW.Call(0, 0, uintptr(unsafe.Pointer(mutexName)))
if err == nil {
return nil, fmt.Errorf("CoreTempMutexObject not found. make sure Core Temp is running")
}
defer releaseMutex.Call(mutexObject)
mappingName, _ := windows.UTF16PtrFromString("CoreTempMappingObject")
mappingObject, _, err := CoreTempMappingObject.Call(4, 1, uintptr(unsafe.Pointer(mappingName)))
if mappingObject == uintptr(0) {
return nil, err
}
defer closeHandle.Call(mappingObject)
mapView, _, err := mapViewOfFile.Call(mappingObject, 4, 0, 0, 0)
if mapView == uintptr(0) {
return nil, err
}
defer unmapViewOfFile.Call(mapView)
data := coreTempSharedData{}
_, _, _ = memcpy_s.Call(uintptr(unsafe.Pointer(&data)), 0xa80, mapView, 0xa80)
return &data, nil
}
type coreTempSharedData struct {
Load [256]uint32
TjMax [128]uint32
CoreCount uint32
CPUCount uint32
Temp [256]float32
VID float32
CPUSpeed float32
FSBSpeed float32
Multipier float32
CPUName [100]byte
IsFahrenheit bool // if true, true, the temperature is reported in Fahrenheit
IsDeltaToTjMax bool // if true, the temperature reported represents the distance from TjMax
}
func (s *coreTempSharedData) GetCPUName() string {
n := bytes.IndexByte(s.CPUName[:], 0)
return strings.TrimSpace(string(s.CPUName[:n]))
}
collectors:
enabled: coretemp
collector:
service:
services-where: "Name='windows_exporter'"
telemetry:
addr: ":9092"
path: "/metrics"
max-requests: 5
scrape:
timeout-margin: 0.5
log:
level: warn
http://sharecore.net/post/%E8%BF%87%E8%BD%BD%E4%BF%9D%E6%8A%A4%E7%AE%97%E6%B3%95%E6%B5%85%E6%9E%90/
按一定速率往桶里放令牌,收到请求的时候从桶里取出。如果取不到令牌,则拒绝处理请求。
import (
time
sync
)
var tokens = 0
var capacity = 100
var rate = 10
var latestPutTime = time.Now().Unix()
var lock sync.Mutex
func min(a,b int) int64 {
if a > b {
return a
}
return b
}
func getToken() bool {
lock.Lock()
defer lock.Unlock()
// 放入令牌
now := time.Now().Unix()
tokens = (now-latestPutTime)*rate
latestPutTime = now
// 桶如果溢出,使用固定限制
tokens = min(capacity, tokens)
if tokens > 0 {
token--
return true
}
return false
}
与桶令牌算法相似。不再是放入令牌取,而是往里面塞令牌。桶定时漏掉一些令牌。
/etc/ansible/hosts
命令行工具:https://docs.ansible.com/ansible/latest/cli/ansible.html
ansible -i hosts -u root -m command -a "/bin/echo hello"
m 表示模块。a 表示 args,是模块的参数。
CPU 分两大类:Intel 和 AMD。
Intel 和 AMD 处理器都有一个面向中高端的主系列,Intel 是酷睿(Core,CPU 型号首字母为 i),AMD 是锐龙(Ryzen,CPU 型号首字母为 R)。Intel 的 i3、i5、i7、i9 和 AMD 的 R3、R5、R7、R9 对应。